Science for Better Health
Zhang JiaJie · China
July 31-August 2, 2011

The 9th Biannual Conference
Chinese Biological Investigator Society

Organizer
Chinese Biological Investigators Society

Co-organizer
Xiang-Ya Hospital of Central South University

http://cbisociety.org/
Program Committee
Chair: Bing Su
Members: Linheng Li, Yi Sun, Manyuan Long, Rong Tan

Local Host Committee
Chair: Lijian Tao, Hong Sun, Ping Xiao
Members: Zhicheng Gong, Lei Zeng, Jianlin Li, Hua Guo, Rong Tan, Dan Yu

金牌赞助商： 联邦制药

赞助商 Sponsors:

July 31-August 2, 2011
CBIS Board of Directors
Officer

Yang Liu, Ph.D. 刘阳
President
University of Michigan

Bing Su, Ph.D. 苏冰
Secretary
Yale School of Medicine

Lingheng Li, Ph.D. 李凌衡
Vice President
Stowers Institute for Medical Research

Shijie Shen, Ph.D. 生世杰
Treasure
Wayne State Univ. School of Medicine

Board Members

Xin-Hua Feng, Ph.D. 冯新华
Baylor College of Medicine

Chenjian Li, Ph.D. 李沉简
Mt Sinai School of Medicine, NYU

Xiaojiang Li, M.D., Ph.D. 李晓江
Emory University School of Medicine

Manyuan Long Ph.D. 龙漫远
The University of Chicago

Duanqing Pei, Ph.D. 裴端卿
Chinese Academy of Sciences

Binghui Shen, Ph.D. 沈炳辉
City of Hope Comprehensive Cancer Center

Yi Eve Sun, Ph.D. 孙毅
UCLA Medical School

Xiao-Jing Wang, M.D., Ph.D
University of Colorado
July 30, 1:00 PM-8:30 PM, July 31, 8:30 – 6:00 PM

Checking and Registration

会议报到流程:

报到地点：张家界京伯尔曼 酒店大堂 报到大厅

流程：注册—缴费—开发票—领房卡—领资料

Early arrivals please go to the front desk to check in to your room. Please mention that you are with CBIS society.

会务组：

3045 号房间 谭嵘 (18684660420)，喻丹 (15873100371)

酒店大堂，联系电话： 谭谈 (13808426998)， 谢彬 (15873162055)，周迅夷 (13755023043)

长沙 联系人：喻丹，15873100371
July 31, 2011

09:00 – 09:05 AM
Opening Ceremony (Taihe Conference Hall)
Chair: Bing Su, Yale University, CBIS Secretary

09:05 – 09:15 AM
President Remarks
Yang Liu, University of Michigan, CBIS President

09:15 – 09:25 AM
Welcome Remarks from Local Host
Lijian Tao, Dean of Xiang-Ya Medical School, Central South University

09:25 – 09:30 AM
Logistic announcement
Bing Su, Yale University, CBIS Secretary

09:30 – 10:30 AM
Keynote Presentation (Taihe Conference Hall)
Rice tillering: molecular basis and application
Jiayang Li, Vice President of Chinese Academy of Science, foreign member of National Academy of Science US
Introduction by Linheng Li, CBIS Vice President, Stowers Institute

10:30 – 11:00
Tea Break

11:00 – 12:00 AM
Society Lectures (Taihe Conference Hall)
Chair: Shijie Sheng, Wayne State University, CBIS Treasurer
Do something to China agriculture and farmers, with acknowledge and skill we learned
Xing-wang Deng, Yale University
PTEN and tumorigenesis
Hong Wu, University of California, Los Angeles

12:00 – 01:30 PM
Round Table Discussion, Buffet Lunch, Western Dining Room
Topics and Host names will be marked on the Table:

1. Neurodegeneration & translational medicine, Chenjian Li, Mt Sinai Medical School, CBIS board member

2. Development, small RNAs, transgenics, Yan Wei, University of Navada

3. Cancer, career development, Shijie Sheng, Wayne State University, CBIS Treasurer

4. Pluripotent stem cells, Renhe Xu, University of Connecticut

5. Cancer, Stem Cell, Development, Lianchun Wang, University of
The 9th Biannual Conference
Chinese Biological Investigator Society

Georgia

6. ER stress, inflammation, obesity, Ling Qi, Cornell University
7. Metabolism and Disease, Xiaoyong Yang, Yale University
8. Chemical biology, Min Li, Johns Hopkins University, Past-President, CBIS
9. Atherosclerosis, bone, hypertension, Yabing Chen, U Alabama at Birmingham
10. Ray Wu Memorial Fund awareness, Charlene Liao, Genetech
11. Cardiovascular Medicine, Eugene Chen, University of Michigan

Parallel Scientific Sessions:

01:30 – 03:30 PM Immunology/Infectious Disease (Conference room 1)
Co-Chairs: Youhai Chen, University of Pennsylvania
Yangxin Fu, University of Chicago

- Regulation and function of T cell subsets in immunity
 Chen Dong, University of Texas MD Anderson Cancer Center
- Regulatory T cells: the good, the bad, and the ugly
 WanJun Chen, NIH
- NF-κB in immunity and inflammation: the Treg and Th17 connection
 Youhai Chen, University of Pennsylvania
- The role of innate lymphoid cells in early infection
 Yang-Xin Fu, University of Chicago
- Innate immunity
 Xuetao Cao, Second Military Medical University, Shanghai
- Crosstalk between host metabolisms and innate immune responses
 Genhong Cheng, University of California Los Angeles
- HIV/HCV coinfection and liver immunopathogenesis
 Lishan Su, Universities of North Carolina

01:30 – 03:30 PM Stem Cell and Regenerative Medicine (泰和国际厅, Taihe Conference Hall)
Co-Chairs: Hongjun Song, Johns Hopkins School of Medicine
Weimin Zhong, Yale University

- Generation of insulin-producing cells from pluripotent stem cells.

July 31-August 2, 2011
Hongkui Deng, Peking University
- Mechanisms regulating pluripotent stem cells
 Ying Jin, Shanghai Institute for Biological Science
- Adult mammalian neural stem cells and neurogenesis
 Hongjun Song, Johns Hopkins University School of Medicine
- Extrinsic and Intrinsic control of stem cell regulation
 Ting Xie, Stowers Institute for Medical Research
- Controlling the fate of human neural stem cells
 Su-chun Zhang, University of Wisconsin
- Mechanisms of stem cell homeostasis
 Weimin Zhong, Yale University

03:30 – 04:00 PM Tea break

04:00 – 06:00 PM Epigenetics, siRNA, miRNA and piRNA (泰和国际厅，Taihe Conference Hall)
Co-Chairs: Ding Xue, University of Colorado
- Zygotic reprogramming of the paternal genome toward totipotency
 Guoliang Xu, Shanghai Institute for Biological Science
- Structural basis for the assembly of centromeric chromatin
 Ruiming Xu, National Laboratory of Biomacromolecules, Institute of Biophysics
- miRNAs in the oncogene and tumor suppressor network.
 Lin He, University of California, Berkeley
- microRNA regulation of mammalian skin development and stem cells
 Rui Yi, University of Colorado at Boulder
- A case for primary microRNA function in target recognition and Repression
 Chang-Zheng Chen, Stanford University School of Medicine
- Dicing up chromosomes - the unexpected role of Dicer
 Ding Xue, University of Colorado at Boulder

04:00 – 06:00 PM Signal Transduction and Protein Modifications (Conference room 1)
Co-Chairs: Jun Qin, Baylor College of Medicine
- Xiao-Fan Wang, Duke University

July 31-August 2, 2011
A novel mechanism for Wnt morphogen regulation and vertebrate head formation
Xi He, Harvard Medical School

TGF-β and Notch signaling in breast cancer metastasis
Yibin Kang, Princeton University

Tissue growth control by coordinated cction of Akt and Hpo Signaling
Zhichun Lai, Pennsylvania State University

Structural insights of MLL histone methyltransferase complex
Ming Lei, University of Michigan, HHMI

START to understand the ABA signaling
Ning Yan, Tsinghua University

Mechanisms of signaling and regulation of the axon guidance receptors plexins
Xuewu Zhang, University of Texas Southwestern

Multiplexed regulations of protein phosphorylation and gene transcription revealed by systems-wide analysis
Rong Zeng, Shanghai Institute for Biological Science

06:00 – 08:00 PM Welcome Dinner Hosted by Xiang Ya Hospital (泰和国际厅, Taihe Conference Hall)
Welcome remark by Dr. Hong Sun, President of Xiang Ya Hospital

08:15 – 10:00 PM Celebrating our achievements-breaking through glass-ceiling (泰和国际厅, Taihe Conference Hall)
Chair: Yang Liu, CBIS President, University of Michigan

08:15 – 09:00 PM Special Lecture
Regulation of active DNA demethylation in plants
Jian-Kang Zhu, Purdue University, NAS fellow
Introduction by Shouwei Ding, UC Riverside

09:00 – 09:45 PM CBIS and Glass Ceiling in Science
Xiao-Fan Wang, Duke University

09:45 – 10:00 PM Loose end: CBIS, 14+X years
Jun-lin Guan, University of Michigan
August 1, 2011

08:30 – 09:30 AM CBIS Special Lecture (Taihe Conference Hall)
Structural changes in alphavirus envelope glycoproteins during maturation and fusion
Dr. Michael Rossmann, Purdue University, NAS member
Introduction by Yigong Shi, Tsinghua University, ex-CBIS President

09:30 – 10:00 AM Society Lectures (Taihe Conference Hall)
Chair: Yigong Shi, Tsinghua University, ex-CBIS President
Massive signalosomes - a new concept in cell signaling?
Hao Wu, Cornell University

10:00 – 10:30 AM Cancer and Metabolism
Yue Xiong, University of North Carolina at Chapel Hill

10:30 – 11:00 AM Tea break

11:00 – 12:00 AM Society Lectures (Taihe Conference Hall)
Chair: Xinhua Feng, Baylor College of Medicine, CBIS Board Member
Scaffold proteins in neuronal signaling and human diseases
Mingjie Zhang, Hong Kong University of Science and Technology
Ubiquitin signaling - the magic of forming a chain
Zhijian Chen, HHMI, University of Texas Southwestern Medical School

12:00 – 01:30 PM Round Table Discussion, Buffet Lunch, Western Dining Room
Topics and Host names will be marked on the Table:

1. Inflammation, cancer, immunity, Xiaojing Ma, Weill Medical College of Cornell Uni.
2. Plant immunity, Xin Li, University of British Columbia
3. Viral immunity, Shou-Wei Ding, University of California
4. Extremophiles and beyond, Kesen Ma, University of Waterloo
5. Tissue stem cells, Shihuan Kuang, Purdue University
6. Autophagy, Zhong Qing, UC Berkeley
7. Successful big-team grants, Dihua Yu, MD Anderson Cancer
8. Aging Biology, hematopoietic stem cells, Pan Zheng, University of Michigan

10. microRNA, stem cell, cancer, Changzheng Chen, Stanford University

11. Cancer metabolic nanomedicine, Jinming Gao, UT Southwestern

12. Infection, immunity & Vaccine, G Zhong, UT Health Science Center at San Antonio

13. Graduate and undergraduate education, Chenjian Li, Mt. Sinai Medical School, CBIS Board Member

Parallel Scientific Sessions:

01:30 – 03:30 PM **Metabolism/Cancer (Conference Room 1)**

*Co-Chairs: Feng Liu, Uni. of Texas Health Science Center
Duojia Pan, The Johns Hopkins University*

*● Analysis of SVZ stem cell lineages in brain cancer susceptibility
 Yuan Zhu, University of Michigan*

*● Targeting mTOR by adiponectin and resveratrol: mechanism and action
 Feng Liu, University of Texas Health Science Center*

*● ER stress and inflammation in obesity and diabetes
 Ling Qi, Cornell University*

*● Targeting novel lipids for developing new diabetic and cardiovascular drugs
 Eugene Chen, University of Michigan*

*● Oxidative stress-induced senescence in regulating cancer and ageing.
 Kunxin Luo, University of California, Berkeley*

*● Exploiting warburg effect: development of pH-activatable nanomedicine for cancer imaging and therapy.
 Jinming Gao, University of Texas Southwestern Medical Center*

01:30 – 03:30 PM **Disease Resistance in Plant (Conference Room 3)**
Co-Chairs: Shou-wei Ding, University of California, Riverside
Zuhua He, Shanghai Institute of Plant Physiology

- **Bacterial virulence proteins and Arabidopsis innate immunity**
 Jian-Min Zhou, National Institute of Biological Sciences, Beijing

- **Turning on a disease resistance gene in plant immunity**
 Jian Hua, Cornell University

- **Pseudomonas syringae type III Effector HopZ1 targets multiple plant defense mechanisms to suppress immunity**
 Wenbo Ma, University of California, Riverside

- **A genetic solution to the resistance-yield dilemma in rice breeding**
 Zuhua He, Shanghai Institute of Plant Physiology

- **Gene network of Rac1-mediated conidiogenesis and pathogenesis in Magnaporthe oryzae**
 Zonghua Wang, Fujian Agricultural University

- **Suppression of RNA silencing by the viral 2b protein requires a domain involved in nucleolar targeting and dsRNA binding**
 Hui-Shan Guo, Institute of Microbiology, Beijing

- **Functions of RNAi machinery in antibacterial immunity**
 Hailing Jin, University of California, Riverside

03:30 – 04:00 PM **Tea Break**

04:00 – 06:00 PM **Computational Biology/Neuroscience (Conference Room 1)**

Co-Chairs: Xiao-jing Wang, Yale University School of Medicine
Shawn Xu, University of Michigan

- **Introduction: what is computational cell biology?**
 Xiao-jing Wang, Yale University School of Medicine

- **The cost and benefits of sensory adaptation**
 Yuhai Tu, Watson IBM Research Center

- **Robustness in biological networks**
 Tang Chao, University of California, San Francisco

- **Computational problems in epigenomics**
 Michael Q Zhang, University of Texas at Dallas

- **Getting a sense of smell: activation, termination and adaptation of olfactory signal transduction in mice**
 Haiqing Zhao, Johns Hopkins University

- **Contribution of projection neurons to lateral excitation in**
04:00 – 06:00 PM

Neurodevelopment, Neurodegeneration, and Aging

(Conference Room 3)

Co-Chairs: Zheng Hui, Baylor College of Medicine

X. William Yang, David Geffen School of Med at UCLA

- Identification of a flip-flop circuit regulating feeding behavior in C. elegans

 Zuoren Wang, Shanghai Inst. of Neuroscience

- Signaling neural stem cell self-renewal and neurogenesis

 Yanhong Shi, Beckman Research Institute of City of Hope

- Novel role of lipid metabolism in regulation of longevity.

 Meng Wang, Baylor College of Medicine

- The methylomics of neurodegeneration and aging

 Kun Zhang, University of California, San Diego

- Regulation of autophagy by the class III PI3K and its implication in Aging

 Qing Zhong, University of California, Berkeley

- A Conditional BAC transgenic approach to dissect Huntington's disease pathogenesis in mice

 X. William Yang, David Geffen School of Medicine at UCLA

- Biology of the Amyloid Precursor Protein

 Hui Zheng, Baylor College of Medicine

06:00 – 07:30 PM

Dinner, Western Dinning Room

Ray Wu Society Memorial Fund Fundraiser (Donors only)

07:30 – 08:30 PM

Panel Discussion: Major Breakthroughs

(泰和国际厅，Taihe Conference Hall)

Tian Xu (Moderator), Yale University

08:30 – 10:00 PM

CBIS and China

(泰和国际厅，Taihe Conference Hall)

(Yi Rao, Yigong Shi, Duanqing Pei, Guoqiang Chen)
August 2

08:30 – 09:30 AM **Society Lectures** (泰和国际厅, Taihe Conference Hall)

Chair: Yi Sun, Uni. of California, Los Angeles, CBIS board member

08:30 – 09:00 AM Identification of DNA/RNA sensors in dendritic Cells

Yong-Jun Liu, University of Texas MD Anderson Cancer Center

09:00 – 09:30 AM Topographic architecture of chromatin looping and models of transcription regulation in human cells

Yijun Ruan, Singapore

09:30 – 10:00 AM Tea Break

Parallel Scientific Sessions:

10:00 – 12:00 AM **DNA Damage and Cell Cycle Regulation** (Conference Room 1)

Co-Chairs: Yixian Zheng, Carnegie Inst. of Washington

Yue Xiong, Uni. of North Carolina at Chapel Hill

- Molecular mechanisms of mitotic cell death
 Hongtao Yu, University of Texas Southwestern

- Nuclear lamins in cell division and development
 Yixian Zheng, Carnegie Inst. of Washington

- Ciliogenesis: a tale of “tails”
 Xueliang Zhu, Shanghai Institute of Biochemistry and Cell Biology

- Fanconi Anemia and repair of complexed DNA lesions
 Lei Li, University of Texas MD Anderson Cancer Center

- p53, metabolic stress and tumor suppression
 Yanping Zhang, University of North Carolina at Chapel Hill

10:00 – 12:00 AM **High Throughput Biology and Translational Medicine** (Conference Room 3)

Co-Chairs: Min Li, Johns Hopkins University

Sheng Ding, The Scripps Research Institute

- Genomics guided personalized medicine
 Kang Zhang, University of California San Diego

- Activity-base phosphorylation networks in humans
 Heng Zhu, Johns Hopkins University School of Medicine

- “BATMAN and JOKER” in targeted therapies
 Dihua Yu, University of Texas MD Anderson Cancer Center
The 9th Biannual Conference
Chinese Biological Investigator Society

- Discovery of protein-protein interaction modulators through HTS
 Haian Fu, Emory Graduate School
- A chemical approach to controlling cell fate
 Sheng Ding, The Scripps Research Institute

12:00 – 1:00 PM Buffer Lunch

01:00 – 02:00 PM Panel Discussion (Taihe Conference Hall)
 Chair: Xiaojing Wang, CBIS board member, Univ. of Colorado
 NIH Funding: Survival kits for the freezing winter
 Martin Padarathsing, Program Officer, Division of Cancer Biology, NCI
 Gang Dong, Program Officer, Clinical Immunology, NIAID

02:00 – 02:15PM Award Ceremony (Taihe Conference Hall)
 Chair: Yang Liu, University of Michigan, CBIS President
 Ray Wu Awardees
 Kunliang Guan, University of California, San Francisco
 Yigong Shi, Tsinghua University
 CBIS Young Investigator Awardee
 Xinzhong Dong, Johns Hopkins University
 CBIS-Education Awardee
 Weimin Zhong, Yale University

Awardee Presentations (Taihe Conference Hall)

02:15 – 02:45 PM The mTOR and Hippo pathways in cell growth, organ size, and tumorigenesis
 Kunliang Guan, Introduction by Bing Su, CBIS Secretary

02:45 – 03:15 PM Life Sciences in China: The TsingHua Approach
 Yigong Shi, Introduction by Linheng Li, CBIS Vice President

03:15 – 03:35 PM Itch mechanisms and seeing pain
 Xinzhong Dong, Introduction by Shawn Xu, past Awardee

03:35 – 03:55 PM High Education Reform in China: What can we contribute?
 Weimin Zhong, Introduction by Chenjian Li, CBIS board member

04:00 – 05:00 PM Election
 Chair: Binghui Shen
 The candidates bio-sketches and main goals are included in the program
 Ballots will be distributed prior to the award session
05:00 – 05:15 PM Meet the new board of directors (Taihe Conference Hall)
05:30 – 07:30 PM Closing Banquet (Taihe Conference Hall)
 Hosted by Xiang Ya Hospital
08:00 – 10:30 PM Entertainment
 魅力湘西
Candidates for next CBIS Board of Directors:

Elect 12 members among the following 19 candidates

Current board members up for re-election (7)

LI, Lingheng (candidate for president)

Investigator
Stowers Institute for Medical Research
Affiliate Professor
University of Kansas Medical Center

1985 Fudan University, Shanghai, P.R. China B.S. Biology
1993 New York University, Medical Center, New York M.S. Molecular & Cellular Biol.
1995-98 Senior Associate, Department of Molecular Biotechnology, University of Washington, Medical Center, Seattle, WA
1998-00 Affiliate Assistant Professor, Department of Molecular Biotechnology, Department of Pediatrics/Division of Genetics, University of Washington Medical Center, Seattle, WA
2000–05 Assistant Investigator, Stowers Institute for Medical Research, Kansas City, MO
2001-06 Affiliate Assistant Professor, Dept of Pathology, University of Kansas Medical Center, Kansas City, KS
2006-2008 Associate Investigator, Stowers Institute for Medical Research, Kansas City, MO
2006-2009 Affiliate Associate Professor, Dept of Pathology, University of Kansas Medical Center
May 2008 Investigator, Stowers Institute for Medical Research, Kansas City, MO
July 2009 Affiliate Professor, Dept of Pathology, University of Kansas Medical Center

Research interest
1) Identification of hematopoietic stem cell niche, 2) defining BMP and Wnt as Yin-Yang signaling in control of stem cell self-renewal, 3) discovering a critical role of PTEN that distinguishes normal vs cancer stem cells in bone marrow and intestine, and 4) finding the coordination between Wnt and PI3K-Akt signaling in expansion of intestinal stem cells

Statement
I am embracing the mission of CBIS as an organization to promote professional interactions and collaborations among Chinese scholars primarily in the life science, to increase the voice of the group represented by the organization to their peers globally, and to provide assistance for the advancement of life science in China.
LI, Chenjian
Associate Professor,
Mt. Sinai School of Medicine

Dr. Li is an alumnus of Beijing Univ. and Peking Union Medical College (PUMC). He received a Ph.D in Molecular Genetics and Neuroscience from Purdue Univ. and pursued a postdoctoral training at the Rockefeller Univ. before he joined the faculty in the Dept. Neurology and Neuroscience at Cornell Medical College. His Laboratory of Molecular Genetics and Neurological Diseases is devoted to the study of neurodegenerative diseases and establishment of genetic methods and animal models. His research achievements have been recognized nationally and internationally. He was invited to deliver lectures at prestigious meetings, academic institutions and major pharmaceutical companies in USA and abroad; he is a reviewer of grants for NIH (USA), government agencies of other countries, and foundations in USA and Europe; he was invited to contribute to the Encyclopedia of Neuroscience (edited by Larry Squire).

In addition to his research career, Dr. Li has been active in serving the Chinese student and scholar community. He was the vice president and president of student associations at PUMC and Purdue Univ., the coordinator of Chinese Faculty Club of the tri-institutions (Cornell Medical College, Rockefeller Univ. and Sloan Kettering), and current CBIS board member. He is a regular lecturer of the Biology 2000 course, co-organized by Chinese Academy, Beijing Univ. and TsingHua Univ. He also initiated and teaches “Scientific Reading and Writing” course at Beijing Univ.

Dr. Li is enthusiastic in continuing serving CBIS.

FENG, Xin-Hua
Professor,
Baylor College of Medicine

My academic training began as an undergraduate at Wuhan University, and later a graduate student at Chinese Academy of Sciences. Later, I received my Ph.D. degree from the University of Maryland, and became a postdoctoral fellow at UCSF. I am currently a Professor at Baylor College of Medicine. My research is aimed at elucidating the underlying mechanisms and interplays among protein modifications, signaling pathways and gene transcription as well as understanding their roles in cell proliferation, tissue differentiation and pathogenesis of human diseases.

During recent years, I have been actively involved in organizing and participating activities for scientific advancement and collaborations among Chinese scientists. As a current life member and (if elected) board member of CBIS, I will do whatever in my capacity to continue my effort in promoting research in life sciences and medicine, facilitating the interactions among Chinese scientists, and helping the improvement of life science research as well as its environment in China.
LONG, Manyuan
Professor,
University of Chicago

Dr. Manyuan Long, currently Professor with tenure of Genetics and Evolution at the University of Chicago, received his Ph.D. at the University of California at Davis in 1992. In graduate school, he started his exploration into a new area of molecular evolution: origin and evolution of new genes. After publishing the first paper of new gene evolution in Science from his graduate work in 1993, he moved to Harvard University to further study the theories and molecular mechanisms of new gene origination using bioinformatic and experimental approaches, as a postdoctoral fellow at the laboratories of Profs Walter Gilbert and Richard Lewontin. He joined the Chicago faculty in late 1997 and was promoted to associate professor with tenure in 2003, and full professor with tenure in 2005. He is investigating the patterns and underlying mechanisms of new gene evolution using computational and experimental genomic techniques. He is also exploring the relationship of new genes and phenotypes, especially, the male reproductive functions and related behaviors in Drosophila, using molecular genetic analysis and gene-gene interaction analysis. He has published 93 research articles, commentaries, and reviews, including two dozens in Nature (and Nature series), Science, PNAS, and Cell, and edited the tenth volume of Contemporary Issues of Genetics and Evolution and a volume to celebrate Darwin-China 200 international conferences. He won the best doctoral research prize, Allen Marr Prize, at University of California at Davis, the prestigious National Science Foundation CAREER award in 2003 and the Packard Fellowship for Science and Engineering in 1998. He has been also actively involved in organizing international academic activities in societies and conferences in his fields and the editorial service in major US or international journals of his areas. His findings in new gene evolution have been written into major textbooks of evolution. He was recently elected as the council secretary officer of the major international organization in his area, the Society of Molecular Biology and Evolution to rub. He joined oversea Chinese scientists in helping China to develop sciences and education. In CBIS, he hopes to promote scientific exchanges from the fields of his expertise in evolutionary and genomic areas and to help colleagues in the society from various fields to develop interdisciplinary researches from diverse domains ranging from molecular and genomic to bioinformatics to theoretical biological branches.

SHENG, Shijie
Professor, Pathology and the Co-Leader of the Proteases and Cancer Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine.

Being one of the co-discovers of the maspin gene, a tumor suppressor, her laboratory continues to study the biological functions and underlying molecular mechanisms of maspin and published more than 60 manuscripts. Dr. Sheng has been considered one of the leaders in the field of maspin, extracellular matrix remodeling, and tumor invasion and metastasis; and her laboratory has been continuously funded by extramural mechanisms. Some of her major breakthroughs that are both conceptually novel and clinically relevant were featured in National Cancer Institute Annual Report, highlighted by scientific journals, and won prizes in presentations at scientific conferences. In addition, Dr. Sheng has extensive experience in serving the biological research communities in her additional capacities as a reviewer for more than 30 study sections, as a member of the promotion
and tenure committee at the university level, as a mentor of junior faculty and fellows/students, and as a teacher. Dr. Sheng has a track record of acting as an effective and compassionate advocate for Chinese colleagues whenever possible. She strives for positive results through hard work, cooperation, and respect for academic freedom.

SUN, Yi Eve
Associate Professor (with tenure), Dept. Psychiatry and Biobehavioral Sciences, Dept. Molecular and Medical Pharmacology, UCLA Medical School

Yi Eve Sun, Ph.D. received her Bachelor’s degree in Biochemistry from FuDan University and went on to earn her PhD in Neuroscience at Case Western Reserve University in Cleveland, Ohio, USA, where she studied involvement of cytokines and neuropeptides during injury and regeneration of the peripheral nervous system. She later on obtained postdoctoral training in neural stem cell research at Harvard Medical School, before she joined UCLA as a tenure-track assistant professor in the Department of Psychiatry and Biobehavioral Sciences and the Department of Molecular and Medical Pharmacology. She is also a founding member of the UCLA Institute of Stem Cell Biology and Medicine. In 2008, she temporally worked as a Director for Stem Cell Research in GlaxoSmithKline, R&D, China.

Her research contributions are in the area of epigenetic (DNA methylation, histone modification, and non-coding RNAs) and transcription regulation of neural stem/progenitor cell differentiation and neuronal functions, as well as building novel neurological disease models (particularly autism spectrum disorders including Rett syndrome) using human pluripotent stem cell-derived functional neural cells to studying disease etiology and to establish drug discovery platforms.

My Agenda:

It will be an enormous pleasure for me to be able to help building a strong and easily accessible supportive networking system through CBIS that is aimed at providing assistance - the additional lift, needed to let each one of our fellow Chinese biomedical research scientists SHINE in their scientific endeavors.

WANG, Xiao-Jing
Professor, University of Colorado Denver

I (Xiao-Jing Wang), am currently a John S. Gates endowed Chair, Director of Head and Neck Cancer Research Program at the University of Colorado Denver (UCD). My research interests have focused on the molecular mechanisms of skin and head and neck cancers, skin development and diseases. I have published over 100 research articles in major peer-reviewed journals. I currently hold several NIH grants which provide over 1 million dollars in annual research funds. I have been an invited speaker at many prestigious international meetings, including: special conferences of the American Association for Cancer Research (2006, 2007), a State-of-the-Art lecture for the Society of Investigative Dermatology (2006), a Keynote speaker for the Annual Meeting of Chinese Dermatology Society (2006), and the Annual Meeting of the Japanese Cancer Association (2007). I have served on several study sections of the National Institutes of Health, President of Society of Chinese
Biologists in America (SCBA)-Oregon Chapter (2005-2007), and is currently a Chairperson of Scientific Program Committee for the Society of Investigative Dermatology. I am willing to serve as a board member of CBIS to contribute to interactions among scientists of CBIS and to promote career development of young scientists.

ZHONG, Weimin (candidate for vice president)
Associate Professor
Department of Molecular, Cellular and Developmental Biology
Yale University

1981–1984 Undergraduate Student (Premed), Department of Biology, Peking University
1984–1988 Medical Student, Peking Union Medical College
1988–1993 Ph.D. Student, The Rockefeller University
1994–1998 Postdoctoral Fellow
Howard Hughes Medical Institute & Department of Physiology
University of California, San Francisco

1999–2004 Assistant Professor
Department of Molecular, Cellular and Developmental Biology, Yale University
2004–present Associate Professor (without term since 2008)
Department of Molecular, Cellular and Developmental Biology, Yale University

Research interest
The molecular and cellular mechanisms that govern the behavior of stem cells, in particular how they balance the competing needs of self-renewal and differentiation during mammalian organogenesis and tissue maintenance.

LI, Lei,
Professor,
Department of Experimental Radiation Oncology,
The University of Texas MD Anderson Cancer Center

B.S., Beijing University, China, 1984
Ph.D., Beijing University Medical School
Postdoctoral fellow, The University of Texas, MD Anderson Cancer Center

1998-2004 Assistant Professor, Department of Experimental Radiation Oncology, Department of Genetics, UT MD Anderson Cancer Center
2004-2009 Associate Professor, Department of Experimental Radiation Oncology, Department of Genetics, UT MD Anderson Cancer Center
2009-present Professor, Department of Experimental Radiation Oncology, Department of Genetics, UT MD Anderson Cancer Center

Research interest:
DNA damage and checkpoint signals in tumorigenesis; chromatin remodeling mechanisms and DNA repair and damage checkpoint pathways.
LUO, Kunxin
Professor of Cell and Developmental Biology
UC Berkeley

1982-1986 University of Science & Technology of China, P.R. China B.S.
1987-1989 University of California, San Diego M.S.
1987-1992 University of California, San Diego Ph.D
1993-1997 Whitehead Institute for Biomedical Research, Cambridge, M
Postdoctoral
1997 - Faculty Scientist, Lawrence Berkeley National Laboratory
1997-2002 Assistant Adjunct Professor of Cell and Developmental Biology, Dept. of Molecular and Cell Biology, University of California, Berkeley
2002-2003 Associate Adjunct Professor of Cell and Developmental Biology, UC Berkeley
2003-2009 Associate Professor of Cell and Developmental Biology, UC Berkeley
2009-present Professor of Cell and Developmental Biology, UC Berkeley

Research interest
Transforming growth factor-beta regulator SnoN in mammalian development, function and diseases.

YANG, Xiangdong William
Professor
Brain Research Institute
University of California at Los Angeles

1985-1987, No Degrees. Department of Biochemistry, Peking University, Beijing, China.
1991 M.S./B.S. in Molecular Biophysics & Biochemistry, Yale University,
1998 Ph.D. Rockefeller University (MSTP Program)
1998-1999: Postdoctoral Fellowship Rockefeller University
2000, M.D. Weill Medical College of Cornell University (MSTP Program),
2000-2001 Medicine Internship, , New York-Presbyterian Hospital/Cornell Medical Center,
2001-2002. Postdoctoral Fellowship Rockefeller University
2002-2008 Assistant Professor
2008-2011 Associate Professor (Tenured),
2011-present Professor,
Department of Psychiatry & Biobehavioral Sciences,
Brain Research Institute,
University of California at Los Angeles University

Research interest
The pathogenesis of neurodegenerative diseases including Huntington disease and Parkinson diseases

Statement
I am honored to be a candidate for the Board of Directors for CBIS. I am currently

July 31-August 2, 2011
Professor in the Center for Neurobehavioral Genetics and Department of Psychiatry at UCLA. I have participated in every CBIS meeting since 2003, and have benefited tremendously from interactions with its members and with scientists from China. I am currently involved in establishing joint efforts between UCLA and Chinese institutions on neuropsychiatric disease research. If given the privilege to serve on the Board, I will support a career mentoring program for junior investigators in CBIS and promote Sino-US collaboration in brain disorder research.

ZHENG, James Q.
Professor
Department of Cell Biology
Emory University School of Medicine

1979 – 1984: B.S., Dept. of Engineering Physics, Tsinghua University, Beijing, China.
1984 – 1989: Ph.D. in Biophysics, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China.
1989 – 1991: Postdoctoral fellow, Dept. of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX. In addition, summer fellow, Marine Biological Laboratory, Woods Hole, MA.
1996 – 1996: Senior Scientist, Department of Biology, University of California at San Diego, San Diego, CA.
1996 – 2002: Assistant Professor, Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, Piscataway, NJ.
2002 – 2007: Associate Professor with tenure, Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, Piscataway, NJ.
08/01/2008 –: Professor with tenure, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA.

Research interest:
The signal transduction and cytoskeletal mechanisms underlying neuronal migration, axon growth and guidance, and synaptic plasticity.

ZHENG, Pan
Professor,
Department of Surgery, Department of Pathology,
University of Michigan, Ann Arbor, MI.

Peking Union Medical College, Beijing, P.R. China
M.D. 1987 Medicine
Yale University, New Haven, Connecticut
Ph.D. 1994 Immunobiology
1986-1987 Internship, Internal Medicine, Surgery, Pediatrics, and Obstetrics and Gynecology Departments, Peking Union Medical College Hospital, Beijing, P. R. China
1987-1988 Resident, Internal Medicine, Peking Union Medical College Hospital, Beijing, China.
1989-1989 Chief Resident, Endocrinology, Peking Union Medical College Hospital, Beijing, China.
1994-1998 Resident, Anatomic and Clinical Pathology, Department of Pathology, New York University Medical Center, New York, NY.
1998-2003 Assistant Professor, Department of Pathology, College of Medicine and Public Health, The Ohio State University, Columbus, OH.
2003-5/2006 Associate Professor, Department of Pathology, College of Medicine and Public Health, The Ohio State University, Columbus, OH.
6/2006-2011 Associate Professor, Department of Surgery, Department of Pathology, University of Michigan, Ann Arbor, MI.
2011- Professor, Department of Surgery, Department of Pathology, University of Michigan, Ann Arbor, MI.

Research Interest
mTOR, Inflammation and Senescence of Hematopoietic Stem Cells.
CD24 as a potential therapeutic target in prostate cancer.
CD24 Polymorphism and acetaminophen toxicity.

Statement
Pan Zheng has been attending CBIS biannual meetings since 1989 Boston Meeting. She always treasures the experience to meet and to know the most talented and the top notch Chinese scientists in these meetings. She is excited to be nominated for the CBIS board member in 2011 and is looking forward for the opportunity to serve the CBIS. Together with Yang Liu, she is scientifically and socially active in local Chinese faculty community in University of Michigan in Ann Arbor.

ZHANG, Mingjie
Chair Professor of Biochemistry
Department of Biochemistry
Hong Kong University of Science and Technology (HKUST)

1984-1988 Fudan University, P.R. China B.S. Chemistry
1989-1993 University of Calgary, Canada Ph.D. Biochemistry
1994-1995 Ontario Cancer Institute, Canada (Postdoc) Structural Biology

1995-1999 Assistant Professor, Department of Biochemistry, Hong Kong University of Science and Technology (HKUST)
2000-2004 Associate Professor, Department of Biochemistry, HKUST
2004-2008 Professor, Department of Biochemistry, HKUST
2008-date Chair Professor, Department of Biochemistry, HKUST

Research interest
Molecular basis of protein complexes in regulating cell polarity and neuronal signaling.

Statement:
It is an honor and privilege to have a possibility of becoming a member of CIBS board. Being in Hong Kong, I am in a unique position to bridge the biological science research communities in China and North America, as I have been closely working with scientists from the both communities in the last 15+ years. My priority will be on young generation of scientists including junior PIs and graduate students. For junior PIs, I hope that we (more seasoned PIs who have accumulated sufficient amount of successful as well as less pleasant experiences in our professional careers) will be able to provide some mentoring guidance to them. In my view, this is urgently needed in the rapidly growing research community in China with huge numbers of fresh PIs. For graduate students, it will be valuable if we can help to push for a healthier and higher quality of graduate
training culture (via courses such as BIO2000, by working with relevant regulatory offices, etc). A high quality graduate program will also enlarge the talent pool for all of us working outside China.

SU, Lishan
Professor of Microbiology & Immunology
School of Medicine
The University of North Carolina

Ph.D. degree in Virology from Harvard University
1993-1996 Research scientist at SyStemix-Sandoz (now Novartis)
1996- a faculty member in the Department of Microbiology & Immunology, and a member of the Lineberger Comprehensive Cancer Center, in the University of North Carolina at Chapel Hill.

Research Interest:
Development and function of the human immune system, as well as HIV-1 infection and immuno-pathogenesis

Statement:
As one of the first group to benefit from effort by Chinese overseas scholars such as Dr. Ray Wu, it will be a great honor and responsibility for me to serve the CBI Society and the Chinese bioscience community. If elected as a member of the board of directors, I will focus on the major mission of CBIS, i.e. to enhance interactions between Chinese overseas scholars and colleagues in China, and amongst Chinese overseas scholars in academics and in industry. My previous experience in the biotech industry as well as in major universities on both East and West coasts in the US will enable me to serve the society well in that regard. In addition, I have been involved in significant long-term collaborations with Universities and Institutes in China in the last decade, which will help to bridge interactions between Chinese scholars overseas and in China.

SHEN, Zhiyuan
Professor of Radiation Oncology, and Pharmacology
Chief, Division of Radiation Cancer Biology,
Dept of Radiation Oncology
The Cancer Institute of New Jersey
Robert Wood Johnson Medical School

- 1985, Bachelor of Medicine, Norman Bethune University of Medical Sciences, Jilin, China,
- 1985, Master of Medicine (MS), Radiation Toxicology, Beijing Institute of Radiation Medicine, Beijing, China,
- 1993, PhD, Molecular Biology & Radiation Biology, Colorado State University, Fort Collins, Colorado, USA.
- 01/1990– 02/1994, Graduate Research Assistant (01/1990) and postdoctoral fellow (05/1993) with Dr. Mortimer M. Elkind, Dept. of Radiological Health Sciences, Colorado State University, Fort Collins, Colorado.
- 02/1994-05/1997, Director's Postdoctoral Fellow (with Dr. David J Chen, 1994), and Staff Member (09/1996), Life Sciences Division, Los Alamos
05/1997-05/2000, tenure-track Assistant Professor, Cancer Center and Department of Molecular Genetics, University of Illinois at Chicago, Chicago, IL.

05/2000-06/2006, tenure-track Assistant Professor (2000), tenured Associate professor (2003), Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM

05/2006- present, tenured Associate Professor (2006) and Professor (2008), and Chief (2006) of Division of Radiation Cancer Biology, Department of Radiation Oncology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ

Research interest
The molecular mechanisms by which eukaryotic cells maintain their genomic integrity, with emphasis on DNA homologous recombinational repair.

Statement
I am very pleased to be considered and nominated for a membership in the CBIS board. Unlike many other professional associations, CBIS is unique for the diverse scientific and academic interests of her members. Yet, her members are rather ethnically homogenous, with similar cultural and educational background. I fully recognize the importance of this unique property of our society in organizing relevant activities. To benefit the members of this organization, we should take advantage of the common ethnic and cultural background, but keep in mind the diverse scientific interests. In the past 10 years, I have been involved in various review and conference organization activities. I will work with other board members to create opportunities for members with different but often complementary scientific interests to interact closely.

Wu, Hao,
Professor of Biochemistry
Weill Medical College of Cornell University
1982-1985 Peking University, Beijing, China B. Sc. Equiv. Biology
1985-1988 Peking Union Medical College, Beijing, China MD candidate Medicine
1988-1992 Purdue University, West Lafayette, Indiana Ph.D. Biochemistry
1997-2001 Assistant Professor
2001-2003 Associate Professor
2003-present Professor, Department of Biochemistry, Weill Medical College of Cornell University.

Research interest:
Structural and functional studies of the DISC complex, TNF Receptor Associated Factors, the Caspase Activating Complex Piddosome, and the IkappaB Kinase (IKK) Complex.

Statement:
I have been an avid supporter and a lifetime member of the CBIS for a number of years. My goal of serving on the CBIS board is to learn about the operating mechanisms of CBIS and to work with fellow board members to promote its important missions. I feel that I may be able to utilize my expertise and to contribute to at least two aspects of the CBIS organization: 1) its website and 2) the CBIS biennial meeting, making them as even better portals of communication for the society.

CHENF, Linzhao

Professor of Medicine;
Associate Director for Basic Research,
Division of Hematology in Department of Medicine
Johns Hopkins University School of Medicine

1980-1985 University of Science and Technology of China, Hefei, Anhui Province, P.R. China B. Sc. Molecular Biology
1985-1991 Johns Hopkins University School of Medicine, Baltimore, Maryland, USA Ph.D. Molecular Biology and Genetics
1991-1994 NCI-Frederick Cancer Research & Development Center, Frederick, Maryland, USA Postdoctoral Stem Cell and Developmental Biology
1/1997-1/1999 Senior Research Scientist and Group Leader for Molecular Stem Cell Biology Osiris Therapeutics, Inc., Baltimore, Maryland
2/1999-9/2005 Assistant Professor of Oncology, Johns Hopkins University School of Medicine
11/2003-present Member, Stem Cell Program, The Johns Hopkins Institute for Cell Engineering
12/2003-9/2005 Assistant Professor, Division of Developmental Genetics in Department of Medicine Johns Hopkins University School of Medicine (JHUSOM)
10/2005-present Associate Professor and Professor of Medicine (Hematology), JHUSOM
2/2007-8/2009 Founding Director, Stem Cell Resources Center, JHUSOM
10/2009-present Associate Director for Basic Research, Division of Hematology in Department of Medicine, JHUSOM

Research interest
Human pluripotent stem cell biology, blood development, and disease modeling and treatment.

Statement:
As a life member, I endorse the CBIS missions set up by its founders and members. I am now in a better position to better serve CBIS and our community. With my unique background and broad experience, I hope to promote both basic and translational research. Working together with other CBIS members, I hope to contribute to the following: to help young investigators to network and receive recognitions they deserve; to help other established investigators to break glass ceilings and take leadership in their fields and institutions; to enhance interactions between CBIS members including those residing in China.
QIN, Jun
Professor
Department of Biochemistry and Molecular Biology and Department of Molecular and Cellular Biology,
Baylor College of Medicine, Houston, TX 77030

1987 B.S., Tsinghua University, China, Chemistry
1991 M.S. Kansas State University, Manhattan, KS Physical Chemistry
1996 Ph.D. The Rockefeller University, Life Science
1996-1998 Tenure Track Investigator, National Institute of Heart, Lung and Blood, National Institutes of Health
1998-2004 Assistant Professor, Department of Biochemistry and Molecular Biology and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030.
2004-2011 Associate Professor, Department of Biochemistry and Molecular Biology and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030

Research Interest
Use of mass spectrometry to investigate DNA damage response and nuclear hormone action by isolation and identification of hundreds of endogenous protein complexes that mediate nuclear receptor (NR) and their co-regulator (Co-R) functions.
ABSTRACT: Phytochrome A (phyA) is the primary photoreceptor to transduce far-red light signals into nucleus in Arabidopsis thaliana. It is translocated into nucleus by FAR-RED ELONGATED HYPOCOTYL1 (FHY1) in response to both far-red and red light. However, how nuclear phyA and FHY1 activate downstream signaling in far-red light but inactivate themselves in red light remains elusive. An early event specifically occurred in red light, but not in far-red light, is that FHY1 is rapidly phosphorylated by phyA. Here, we report that FHY1 is phosphorylated on S39 and T61, which are very close to the NLS and NES motif. P-mimic FHY1 abolish phyA signaling in FR/R light by remaining in cytoplasm, forming no NBs and retaining photoreceptor phyA in the cytoplasm also. Moreover, non-phosphorylated FHY1 are found to directly associate with CHS promoter in vivo by interacting with HY5 and PIF3 and therefore induce transcriptional activity of TFs, whereas P-FHY1 dissociate from CHS promoter and lead to suppression.

WU, HONG
UCLA, PhD, Professor, hwu@mednet.ucla.edu
ABSTRACT: Like normal stem cells, cancer stem cells (CSC) have the capacity for indefinite proliferation and generation of new cancerous tissues through self-renewal and differentiation. Among the major intracellular signaling pathways, Wnt, Shh, and Notch are known to be important in regulating normal stem cell activities and their alterations are associated with tumorigenesis. It has become clear recently that phosphatase and tensin homologue (PTEN) is also critical for stem cell maintenance and that PTEN loss can cause the development of CSCs and ultimately tumorigenesis. I will discuss our recent findings on suppression of PTEN null CSCs transformation and cancer development.

CHEN DONG
MD Anderson Cancer Center, Professor, cdong@mdanderson.org
ABSTRACT: cell differentiation and inflammatory diseases

CHEN, WANJUN
NIDCR, NIH, Senior Investigator, wchen@dir.nidcr.nih.gov
ABSTRACT: TGF-b, regulatory T cells, autoimmunity and chronic inflammation and cancer

YOUHAI CHEN
University of Pennsylvania, Professor, yhc@mail.med.upenn.edu
ABSTRACT: I. Negative Regulation of Toll-like Receptor Signaling. Toll-like receptors (TLRs) trigger the production of inflammatory cytokines and shape adaptive and innate immunity to pathogens. However, over-activation of TLRs can lead to deleterious inflammatory diseases. Dr. Chen and colleagues have recently found that B cell leukemia (Bcl)-3 plays an essential role in limiting TLR activation. By blocking ubiquitination of NF-Î²B p50, Bcl-3 stabilizes a p50 complex that inhibits gene transcription. As a consequence, Bcl-3-deficient mice and cells are hypersensitive to TLR activation and unable to control responses to lipopolysaccharides. Thus, p50 ubiquitination blockade by Bcl-3 limits the strength of TLR response and maintains innate immune homeostasis. The molecular mechanisms through which p50 ubiquitination is regulated by Bcl-3 are the focus of the current investigation. II. Apoptosis and immune homeostasis. Immune homeostasis is essential for the normal functioning of the immune system.

FU, YANGXIN
University of Chicago, Professor, yfu@uchicago.edu
ABSTRACT: Innate lymphoid cells (ILC) have recently emerged as novel players that regulate the balance between protective immunity and immunopathology at mucosal surfaces. However, the mechanism that regulates their effector functions is not well defined. Here, we demonstrate that RORÎ§t+
ILCs are major producers of IL-22 in the gut, and are regulated by lymphotxin (LT) after C. rodentium infection. In addition, such innate responses are important for gut homeostasis and lipid metabolisms. Altogether, we define a novel mechanism that regulates IL-22 production by innate lymphoid cells that is orchestrated by coordinated LT signaling by RORγt+ innate cells and DCs in gut lymphoid follicles for various gut associate immune responses and homeostasis.

CHENG, GENHONG
UCLA, Ph.D., Professor, gcheng@mednet.ucla.edu
ABSTRACT: Research in Genhong Cheng's laboratory at UCLA is aimed at the process of innate and adaptive immune responses in host defense against pathogen infections, tissue damages as well as tumor challenges. Upon recognizing pathogen associated molecular patterns (PAMPs) or Damage associated molecular patterns (DAMPs), host innate immune receptors such as toll-like receptor (TLR), RIG-I like receptor (RLR) and Nod like receptor (NLR) family receptors can trigger a series of signal transduction and gene expression networks (gene programs) to initiate innate and adaptive immune responses. We hope to understand similarity and difference in host immune responses to different types of bacterial and viral infections, the balance between immune and inflammatory responses, as well as crosstalk between host immune and metabolic systems.

SU, LISHAN
UNC CHAPEL HILL, PhD, Professor, su@med.unc.edu
ABSTRACT: We have been studying HIV-1 virology, immuno-pathogenesis and therapy in relevant models including humanized mouse models. We have identified critical HIV determinants in depleting CD4 T cells and defined the regulation/function of Treg and pDC in HIV-1 infection and pathogenesis. In addition to humanized mice with human immune system, we have established the first humanized mouse with both a human immune system and human liver (AFC8-hu HSC/Hep) that supports HCV or HBV infection, with human immune responses and human liver diseases (hepatitis and liver fibrosis).

DENG, HONGKUI
PEKING UNIVERSITY, Professor, hongkui_deng@pku.edu.cn
ABSTRACT: Human pluripotent stem cells represent a potentially unlimited source of functional pancreatic endocrine lineage cells. We established an efficient approach to induce human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells to differentiate into insulin-producing cells in a chemical-defined culture system. Most of these insulin-producing cells co-expressed beta cell-specific markers such as NKX6-1 and PDX1, indicating a similar gene expression pattern to adult islet beta cells in vivo. This work provides a new model to study the mechanism of human pancreatic specialization and maturation in vitro, and enhances the possibility of utilizing patient-specific iPS cells for the treatment of diabetes.

YING JIN
Shanghai Jiaotong University School of Medicine, Researcher, yjin@sibs.ac.cn
ABSTRACT: At the area of stem cell and molecular regulation mechanism of early embryo development, we have revealed the molecular regulation network that as the core of transcription factor Oct4. It provide a new proof of embryonic stem cells self-renew ability and differentiation mechanisms, and it made an important contribution in embryonic stem cells expansion in vitro. At the same time, we have established several mouse and human embryonic stem cell lines and induced pluripotent stem cells (iPS cells). It provides an embryonic stem cells and iPS cells technology platform that can be used for biomedical research.

SONG, HONGJUN
JOHNS HOPKINS UNIVERSITY, PhD, Associate Professor, shongju1@jhmi.edu
ABSTRACT: We are interested in understanding functions of adult neural stem cells and underlying molecular mechanisms regulating adult neurogenesis in the mature central nervous system.
TING XIE
Stowers Institute for Medical Research, Ph.D, Investigator, tgx@stowers.org
ABSTRACT: My research is focused on applying a combination of molecular, genetic, genomic, developmental, and cell biological approaches to understand how adult stem cells are regulated in vivo using Drosophila and mice as model systems. The mechanisms governing stem cell regulation are also of great interest to understanding aging and developing treatments for degenerative diseases and cancer. However, the molecular mechanisms governing their regulation in vivo remain largely unknown. My laboratory is currently using Drosophila ovarian germline stem cells (GSCs) and somatic stem cells (SSCs) as well as mouse testicular GSCs and eye stem cells to study the molecular mechanisms underlying adult stem cell regulation in vivo.

SU-CHUN ZHANG
University of Wisconsin, Professor, zhang@waisman.wisc.edu
ABSTRACT: We found that Pax6 is both necessary and sufficient for induction of primitive neural stem cells from human but not mouse embryonic stem cells (ESCs). The way by which Pax6 functions is to repress pluripotent gene expression and to induce neuroectoderm gene transcription through coordinated actions of Pax6 isoforms. These findings suggest an evolutionarily novel role of Pax6 in the making of our human brain. The uniform expression of Pax6 in primitive human neuroepithelia appears to contribute to the default generation of cerebral glutamatergic neurons from human ESCs and induced pluripotent stem cells (iPSCs). Regulation of Pax6 at the primitive neural stem cell stage allows specification of versatile neuronal and glial types from human ESCs and iPSCs.

ZHONG, WEIMIN
YALE UNIVERSITY, PhD, Associate Professor, weimin.zhong@yale.edu
ABSTRACT: My laboratory studies the molecular and cellular mechanisms that govern the behavior of stem cells, in particular how they balance the competing needs of self-renewal and differentiation during mammalian organogenesis and tissue maintenance. We use the mammalian Numb proteins as an entry point, and neurogenesis in mice as a model system, to probe the contribution of two modes of cell division - symmetric vs. asymmetric - in regulating the behavior of stem cells.

GUOLIANG XU
Inst of Biochemistry and Cell Biol., CAS, PI, glxu@sibs.ac.cn
ABSTRACT: The G. Xu lab is interested in epigenetic mechanisms that control cell pluripotency and early development in mammals. The current research is focused on DNA methyltransferases and hydroxylases involved in the control of pluripotency genes in mouse ES cells. Based on their understanding of DNA methylation in transcriptional regulation, the Xu lab has designed synthetic reprogramming factors with enhanced transactivation activity, and demonstrated their performance in the generation of iPS cells. Recent publications from the Xu lab include the identification of DNA methyltransferases responsible for the regulation of the Nanog and Oct4 genes. Another recent discovery is the interplay between histone modification and DNA methylation in the regulation of pluripotency genes in stem cell differentiation. Most recent work of his lab addresses mechanisms of DNA demethylation in development and reprogramming.

RUI, YI
University of Colorado - Boulder, assistant professor, yir@colorado.edu
ABSTRACT: We study microRNA-mediated regulation in mammalian skin development, stem cells and cancer.

CHEN, CHANGZHENG
STANFORD UNIVERSITY, Assistant Professor, czchen@stanford.edu
ABSTRACT: We are interested in understanding the mechanisms by which microRNAs (miRNAs) control gene expression and the roles miRNAs play in modulating the development, function and pathogenesis of vertebrate immune systems. Our studies on mechanisms of miRNA action revealed unexpected roles of primary miRNAs in target recognition and repression. The findings show that miRNA genes may contain regulatory information beyond that present in mature miRNA sequences and such regulatory information can be translated into activity through direct RNA:RNA interactions between some primary miRNAs and their cognate targets. Our studies on miRNA functions in vertebrate immune systems revealed how fundamental processes, including T cell sensitivity to antigens, oncogene-induced leukemogenesis and stem cell self-renewal, can be controlled by miRNAs.

HE, XI
HARVARD MEDICAL SCHOOL, Professor, xi.he@childrens.harvard.edu
ABSTRACT: Wnt signaling is essential for development, stem cell regulation and human diseases. Our research has elucidated some of the key mechanisms of Wnt signal transduction. Canonical Wnt/beta-catenin signaling initiated by the action of the Frizzled (Fz) receptor and its coreceptor LDL receptor-related-protein 6 (LRP6). Wnt signaling induces LRP6 phosphorylation at conserved PPPSPxS motifs, which serve as docking sites for the scaffolding protein Axin, thereby allowing the Wnt receptor complex to inhibit beta-catenin phosphorylation and degradation.

I will discuss our study on the regulation of LRP6 phosphorylation, and the role of LRP6-Axin interaction in the initiation and amplification of Wnt signaling at the plasma membrane. I will also describe a novel transmembrane protein, TIKI1, which is required for anterior-posterior patterning and regulates Wnt signaling in a novel and unexpected manner.

KANG, YIBIN
PRINCETON UNIVERSITY, Associate Professor, ykang@princeton.edu
ABSTRACT: Molecular Mechanisms of Cancer Metastasis The difference between life and death for most cancer patients hinges on the degree of spread, or metastasis, of their tumors. The central theme of our research is a multidisciplinary and integrative approach to the analysis of the molecular basis of cancer metastasis, combining molecular biology and genomics tools with animal models and advanced in vivo imaging technologies. We focus on the identification of metastasis genes and functional characterization of their involvement in tumor-stromal interactions during the formation of metastasis in different organs. We are also interested in regulators of mammary gland development and early oncogenic events that may have significant impact on tumor progression and metastasis.

LAI, ZHI-CHUN
PERSONAL INFO: Penn State University, Professor, zcl1@psu.edu
ABSTRACT: Cell signaling, Developmental mechanisms and cancer genetics

MING, LEI
University of Michigan, Dr., leim@umich.edu
ABSTRACT: I have a long-standing interest in understanding the biology of human telomeres. We have made great strides in understanding the structures and functions of major human telomere proteins. We will extend our current research to the following research directions. (1) Many DNA repair factors are present at telomeres. However telomere proteins avert the downstream processes that occur at the sites of DNA damage. We plan to delineate the structural bases of these processes. (2) Epigenetic modifications affect chromatin dynamics and gene expression, and with no doubt play an important role in telomere protection and maintenance. We aim to understand the molecular mechanisms by which chromatin modifications regulate telomere functions. (3) We will advance our efforts toward revealing the atomic structure of human telomerase. (4) We plan to reveal the atomic model of the human telomere structure by combining the strength of cryo-EM and X-ray crystallography.
NIENG, YAN
Tsinghua University, Professor, nyan@tsinghua.edu.cn
ABSTRACT: I am a structural biologist interested in the structure and function of membrane proteins. We are also interested in the molecular mechanism of PYL-mediated abscisic acid signaling in plants.

ZHANG, XUEWU
UT Southwestern Medical Center, Assistant Professor, xuewu.zhang@utsouthwestern.edu
ABSTRACT: Our study is focused on the mechanism of signaling and regulation of the neuronal axon guidance receptors plexins. We use X-ray crystallography in combination with biochemical, biophysical and cell biological approaches to elucidate the pathways used by plexin for signal transduction, and structural mechanisms for their regulation.

SHI, YIGONG
TSINGHUA UNIVERSITY, PhD, Professor and Vice-Director, shi-lab@tsinghua.edu.cn
ABSTRACT: Mechanisms of Programmed Cell Death through Structural BiologyYigong ShiSchool of Life Sciences, Tsinghua University, Beijing 100084, China Programmed cell death, also known as apoptosis, is central to the development and homeostasis of metazoans. Dysregulation of apoptosis leads to a variety of human pathologies, including cancer, autoimmune diseases, and neurodegenerative disorders. Since the concept of apoptosis was established in 1972, research efforts have led to the identification of hundreds of genes that govern the initiation, execution, and regulation of apoptosis primarily in three model organisms: Caenorhabditis elegans, Drosophila melanogaster, and mammals. The central pathway of apoptosis is conserved among the three organisms and involves the activation of cell-killing proteases known as caspases. In this lecture, I describe systematic characterization of the molecular mechanisms of programmed cell death by an integrated approach of structural biochemistry.

XIONG, YUE
UNIVERSITY OF NORTH CAROLINA, PhD, William R. Kenan Professor, yxiong@email.unc.edu
ABSTRACT: It has long been recognized that microtubule damages, if not detected and repaired, may cause mitotic defects or genetically unstable cells prone to tumorigenesis. I will discuss our recent discovery of a novel and evolutionary young pathway involving two p53-binding, cytoplasmic localized E3 ubiquitin ligases in monitoring microtubule damage and maintaining genome integrity. Disruption of this pathway leads to tumorigenesis in mice and developmental retardation in human.

CHEN, ZHIJIAN
UT SOUTHWESTERN MEDICAL C, Ph.D., Professor, zhijian.chen@utsouthwestern.edu
ABSTRACT: We are interested in the biochemical mechanism of signal transduction in immune and inflammatory responses. In particular, we are focusing on the role of ubiquitin in NF-kB signaling pathways and antiviral innate immunity. Our research has also led to the discovery of MAVS, a mitochondrial membrane protein that plays a key role in antiviral immune defense. We are taking biochemical and genetic approaches to dissect the mechanism by which MAVS and mitochondria orchestrate immune responses against infections by viruses and other microbes.

ZHU, YUAN
UNIVERSITY OF MICHIGAN, Associate Professor, yuanzhu@med.umich.edu
ABSTRACT: We are interested in studying molecular mechanisms that regulate proliferation, survival, differentiation and transformation of neural stem cells during development and in adulthood.

QI, LING
CORNELL UNIVERSITY, PhD, Assistant Professor, lq35@cornell.edu
ABSTRACT: As a growing obesity epidemic paralleled by an increased incidence of type 2 diabetes are threatening the health of millions of Americans, a better understanding of the basic pathways linking obesity and insulin resistance is critical to the development of new therapeutic approaches. Excitingly, our data using a gain-of-function mouse model suggest that the spliced form of X-box-binding protein 1...
(XBP1s), a key transcription factor of the mammalian unfolded protein response (UPR), may act as an important regulator of the folding and secretion of adiponectin, an insulin-sensitizing cytokine released by adipocytes. This finding may not only delineate a novel role of XBP1s in systemic insulin sensitivity, but also identify regulators of XBP1s as novel drug targets in increasing circulating adiponectin levels and promoting systemic insulin sensitivity.

LUO, KUNXIN
UNIVERSITY OF CALIFORNIA, Professor, kluo@berkeley.edu
ABSTRACT: p53 maintains genomic stability by orchestrating various cellular events in response to environmental stresses. We have identified SnoN as a novel stress responsive activator of p53 to inhibit tumorigenesis and accelerate aging. SnoN is known to promote proliferation and transformation by antagonizing TGF-β signaling. We show that elimination of this TGF-β antagonistic activity of SnoN in vivo resulted in resistance to tumorigenesis and accelerated aging. This anti-tumorigenic activity of SnoN is independent of TGFβ signaling but relies on its ability to activate p53. Upon induction by stress signals, SnoN binds directly to p53 and competes away Mdm2, allowing p53 stabilization and activation. Thus, we revealed a novel function of SnoN in coordinating stress responses by activating p53.

JINMING GAO
UT Southwestern Medical Center, Professor, jinming.gao@utsouthwestern.edu
ABSTRACT: Advances in cancer biology have rapidly produced many exploitable targets (e.g. acidic tumor pH due to the Warburg effect) for cancer diagnosis and therapy. Achieving high biological specificity has remained as the major challenge for any diagnostic or therapeutic strategies due to the relatively small differences in the patho-physiological signals between the cancerous and normal tissues. Novel nanomedicine platforms that non-linearly amplify these differences have the potential to dramatically improve the diagnostic and therapeutic outcomes. Recently we have established a series of tunable, pH-activatable micelles (pHAM) for cancer imaging and drug/siRNA drug delivery applications. Nanoprobes with different transition pH can be selectively activated in acidic tumors, or specific endocytic compartments such as early endosomes or lysosomes. This capability allows for the development of pH-activatable nanomedicine to achieve intended cancer specificity and efficacy.

WANG, ZONGHUA
Fujian Agriculture and Forestry University, Professor, zonghuaw@163.com
ABSTRACT: Transgenomic evolutionary analysis of fungi

GUO, HUIZHAN
INSTITUTE OF MICROBIOLOGY, Ph.D, Professor, guohs@im.ac.cn
ABSTRACT: Suppression of RNA silencing by the viral 2b protein requires a domain involved in nucleolar targeting and dsRNA binding

MA, WENBO
UNIVERSITY OF CALIFORNIA, Assistant Professor, wenboma@ucr.edu
ABSTRACT: plant-pathogen interactions, molecular mechanisms underlying the virulence functions of pathogen effectors

HAILING JIN
University of California, Riverside, Associate Professor, hailingj@ucr.edu
ABSTRACT: Our research focus is to investigate the roles of small RNAs and RNAi machinery in plant innate immunity

HUA, JIAN
CORNELL UNIVERSITY, Associate Professor, jh299@cornell.edu
ABSTRACT: regulation of disease resistance genes in plant immunity; plant responses to temperature variations

WANG, XIAOJING
Yale University, Professor, xjwang@yale.edu

XINZHONG DONG
Johns Hopkins University School of Medicine, Associate Professor, xinzhongdong@hotmail.com
ABSTRACT: My laboratory has taken a disciplinary approach to study several somatosensation including pain, itch, and gentle touch mediated by dorsal root ganglion (DRG) neurons.

ZUOREN WANG
Institute of Neuroscience, Chinese Academy of Sciences, Investigator, zuorenwang@ion.ac.cn
ABSTRACT: The olfactory system of the fruit fly has been an appealing model for studying the circuitry mechanisms of sensory information transmission / propagation and coding. The glomeruli in Drosophila antennal lobes receive convergent inputs from odorant receptor neurons expressing the same receptor, and are innervated by several homotypic projection neurons which relay the olfactory information to higher brain center. This channel-like anatomical organization is important to olfactory discrimination. We found that PN-mediated inter-channel crosstalk among different glomeruli exist in Drosophila antennal lobes and is relevant to the number of homotypic projection neurons.

SHI, YANHONG
BECKMAN RESEARCH INSTITUTE, Associate Professor, yshi@coh.org
ABSTRACT: The nuclear receptor TLX is essential for neural stem cell maintenance and self-renewal; however, the molecular mechanisms involved remain elusive. Recently, microRNAs (miRNAs) have been shown to be important players in stem cell biology. We have uncovered the regulatory loop between TLX and miRNAs in neural stem cell self-renewal and neurogenesis. We showed that miRNA miR-9 forms a negative regulatory loop with TLX to control the balance between neural stem cell proliferation and differentiation. Members of the let-7 miRNA family are also expressed in mammalian brains and exhibit increased expression during neural differentiation. However, the role of these miRNAs in neural stem cells remains to be studied. In this presentation, I will summarize our current understanding of TLX signaling and its cross-talk with miRNAs in neural stem cell self-renewal and neurogenesis.

MENG, WANG
Baylor College of Medicine, Assistant Professor, wmeng@bcm.edu
ABSTRACT: Our research goals are to advance our knowledge on the fundamental mechanisms of aging, and also provide promising pharmaceutical targets to improve healthy aging. Biology of aging is composed of complex intrinsic deterioration on vital organs. Adipose tissue and the reproductive system are essential endocrine units, releasing adipokines, lipokines and steroid hormones to coordinate organism physiology. During aging, degenerative changes in these key endocrine organs are associated with various age-related diseases such as type II diabetes, central obesity, cancer, and cardiovascular disorders. Our current research interests are to characterize age-associated changes in endocrine organs, identify their genetic causes and investigate their impacts on healthspan and lifespan, with focuses on lipid metabolism, germline stem cell homeostasis and neuroendocrine regulation.

KUN ZHANG
UCSD, Assistant Professor, kzhang@bioeng.ucsd.edu
ABSTRACT: We are developing genome technologies based on single-molecule sequencing, single-cell manipulation/amplification, and chip-based synthesis and manipulation of complex DNA libraries. We apply these novel technologies to stem cell genomics, epigenomics, personal genomes and human common diseases.
MINGJIE, ZHANG
Hong Kong University of Science and Technology, Chair Professor, mzhang@ust.hk
ABSTRACT: Scaffold proteins in neuronal signaling and human diseases

QING, ZHONG
UC Berkeley, Assistant Professor, qingzhong@berkeley.edu
ABSTRACT: We are interested in dissecting the molecular mechanism of DNA damage induced apoptosis and stress induced autophagy.

YONGJUN LIU
UT MD Anderson Cancer Center, Chairman and Professor, yjliu@mdanderson.org

GUAN, KUNLIANG
UCSD, PhD, Professor, kuguan@ucsd.edu
ABSTRACT: Protein acetylation in regulating cellular metabolism
Protein lysine acetylation has emerged as a key posttranslational modification in cellular regulation. We have shown that lysine acetylation is a prevailing form of modification in intermediate metabolic enzymes. Virtually every enzyme in glycolysis, gluconeogenesis, TCA cycle, urea cycle, fatty acid metabolism, and glycogen metabolism are found to be acetylated in human liver tissue. Furthermore, metabolic fuels, such as glucose, amino acids, and fatty acids, regulate acetylation status of metabolic enzymes. We show that acetylation activates EHHADH in fatty acid oxidation and MDH in the TCA cycle, inhibits ASL in the urea cycle, and destabilizes PEPCK1 in gluconeogenesis. Our findings reveal a previously unrecognized general role of acetylation in cellular metabolic regulation.

RUAN, YIJUN
Genome Institute of Singapore, Sr. Group Leader, ruanyj@gis.a-star.edu.sg
ABSTRACT: SPATIAL CHROMATIN ARCHITECTURE AND TRANSCRIPTION REGULATION
Higher-order chromosomal organization for transcription regulation and coordination is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with CTCF and RNA polymerase II (RNAPII) in human cells. These analyses revealed that the general landscape of chromosomal organization is largely framed by CTCF function into abundant chromatin looping structures, which provide the topological basis for gene transcription regulation and coordination. Besides enhancer-promoter interactions, we also revealed abundant promoter-promoter interactions of multiple genes in spatial proximity. Our analyses provide new dimension of combinatorial controls of transcription in eukaryotic genomes.

HONGTAO YU
UT Southwestern Medical Center/HHMI, Professor and Investigator, hongtao.yu@utsouthwestern.edu
ABSTRACT: My long-term research interest is to study cellular mechanisms that govern chromosome inheritance and integrity using a combination of cell biological, biochemical, and biophysical methods.

YIXIAN ZHENG
Carnegie Institution for Science, Professor, zheng@ciwemb.edu
ABSTRACT: My lab is interested in understanding how cells organize their interior for cell division and differentiation. Interphase animal cells contain highly inter-connected structures critical for cellular functions. The chromatin interacts with the nuclear lamina, which connects to the cytoskeleton through inner and outer nuclear envelope proteins. Cell division and cell morphogenesis must be tightly coupled with cell fate decisions during organogenesis and tissue homeostasis. Yet the coupling mechanism has remained poorly understood. By studying the nuclear lamina and the mitotic spindle matrix, we have
uncovered an unexpected role of nuclear lamins in regulating spindle orientation and cell viability during brain development. I will discuss our studies of lamins in the context of mouse development.

YANPING ZHANG
UNC Chapel Hill, Professor, ypzhang@med.unc.edu
ABSTRACT: Several ribosomal proteins (RPs) have been shown to interact with and inhibit the E3 ligase function of Mdm2, thereby activating p53. The pathophysiological significance of these interactions, however, has not been established in vivo. Using a mouse model we establish the RP-Mdm2-p53 axis as a bona fide in vivo signaling pathway important in growth control and tumor suppression. Updated results on the study will be presented.

YU, DIHUA
UNIVERSITY OF TEXAS MD ANDERSON, MD, PhD, dyu@mdanderson.org
ABSTRACT: My laboratory functions as a bridge connecting basic cancer research to important issues in cancer patient care. The long term goal of our research is to determine the molecular mechanisms of cancer initiation, progression, metastasis, and therapeutic resistance, with an emphasis on breast cancer research. We are currently studying the involvement of ErbB2 receptor signaling pathways and 14-3-3zeta in breast cancer. We previously found that PTEN-loss in breast cancer confers Herceptin-resistance (Cancer Cell, 2004, cited >685 times). We recently developed strategies for overcoming Herceptin-resistance that have led to efficacious Phase I/II clinical trials. We have identified key nodes in the Herceptin resistance network and developed strategies of targeting the key node to overcome resistance from multiple resistance mechanisms (Nature Medicine, 2011).

LI, MIN
JOHNS HOPKINS UNIVERSITY, PhD, Professor, minli@jhmi.edu
ABSTRACT: Ion channels are important molecules both in health and in diseases. Intrinsic properties of ion channels have made them difficult to access using routine high throughput methodology. Johns Hopkins Ion Channel Center (JHICC) is a member of MLPCN dedicated to developing assays and performing high throughput screens for ion channel targets. By combining conventional high throughput technologies and automated electrophysiology, we have completed 16 major high throughput campaigns including voltage-gated ion channels, various TRP channels, chloride channels and several transporters. The talk will summarize the on-going work and future directions at JHICC.

SU, BING
YALE UNIVERSITY SCHOOL OF MEDICINE, PhD, bing.su@yale.edu
ABSTRACT: Role of mTORC2 in B lymphocyte development, immunity and tumorigenesis. Mammalian target of rapamycin complex 2 (mTORC2) is a key downstream mediator of phosphoinositol-3-kinase (PI3K) dependent growth factor signaling. In lymphocytes, mTORC2 has emerged as an important regulator of cell development, homeostasis and immune responses. However, our current understanding of mTORC2 functions and the molecular mechanisms regulating mTORC2 signaling in B and T cells are still largely incomplete. Recent studies have begun to shed light on this important pathway. We have previously reported that mTORC2 mediates the growth factor dependent phosphorylation of Akt and facilitates the Akt dependent phosphorylation and inactivation of the transcription factors FoxO1 and FoxO3a. We have recently explored the functions of mTORC2 in B cells and show that mTORC2 plays a key role in regulating survival and immunoglobulin (Ig) gene recombination of bone marrow B cells through an Akt2-FoxO1 dependent mechanism. Normally Ig recombination is suppressed in proliferating B cells to ensure that DNA double strand breaks are not generated in actively dividing cells. Our results raise the possibility that genetic or pharmacologic inhibition of mTORC2 may promote B cell tumor development as a result of inefficient suppression of Ig recombination in dividing B cells. We also propose a novel strategy to treat cancers based on our recent discovery that mTORC2 regulates Akt protein stability in other types of cells. References: Jacinto, et al. Cell 2006. Lazorchak, et al., Mol. Cell. 2010.
<table>
<thead>
<tr>
<th>Meeting Participant</th>
<th>Employer</th>
<th>eMail</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAI, WENLONG</td>
<td>USF COLLEGE OF MEDICINE</td>
<td>wbai@health.usf.edu</td>
</tr>
<tr>
<td>CHEN,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHANGZHENG</td>
<td>STANFORD UNIVERSITY</td>
<td>czchen@stanford.edu</td>
</tr>
<tr>
<td>CHEN, QUOQIANG</td>
<td>SHANGHAI Jiaotong University</td>
<td>gqchen@sibs.ac.cn</td>
</tr>
<tr>
<td>CHEN, Wanjun</td>
<td>NIDCR, NIH</td>
<td>wchen@dir.nidcr.nih.gov</td>
</tr>
<tr>
<td>CHEN, YABING</td>
<td>Birmingham</td>
<td>ybchen@uab.edu</td>
</tr>
<tr>
<td>CHEN, YOUHAI</td>
<td>University of Pennsylvania</td>
<td>yhc@mail.med.upenn.edu</td>
</tr>
<tr>
<td>CHEN, ZHIJIAN</td>
<td>UT SOUTHWESTERN MEDICAL COLLEGE</td>
<td>zhijian.chen@utsouthwestern.edu</td>
</tr>
<tr>
<td>CHENG, LEI</td>
<td>Shanghai Inst of Biochem and Cell Biol</td>
<td>lcheng@sibs.ac.cn</td>
</tr>
<tr>
<td>CUI, RUTAO</td>
<td>Boston University</td>
<td>cuirutao@bu.edu</td>
</tr>
<tr>
<td>DENG, HONGKUI</td>
<td>PEKING UNIVERSITY</td>
<td>hongki_deng@pku.edu.cn</td>
</tr>
<tr>
<td>DENG, XINGWANG</td>
<td>YALE UNIVERSITY</td>
<td>xingwang_deng@yale.edu</td>
</tr>
<tr>
<td>DING, SHOUWEI</td>
<td>UNIVERSITY OF CALIFORNIA</td>
<td>shen-wei.ding@ucla.edu</td>
</tr>
<tr>
<td>DING, XINXIN</td>
<td>NEW YORK STATE</td>
<td>xing_shan@nyu.edu</td>
</tr>
<tr>
<td>DONG, Chen</td>
<td>MD Anderson Cancer Center</td>
<td>cdong@mdanderson.org</td>
</tr>
<tr>
<td>DONG, GENG</td>
<td>NIH</td>
<td>gdong@niaid.nih.gov</td>
</tr>
<tr>
<td>DONG, XINZHONG</td>
<td>Johns Hopkins School of Medicine</td>
<td>xinzhongdong@hotmail.com</td>
</tr>
<tr>
<td>FEI, PEIWEN</td>
<td>UNIVERSITY OF MINNESOTA</td>
<td>peiwen.pei@gmail.com</td>
</tr>
<tr>
<td>FENG, WEI</td>
<td>Institute of Biophysics, CAS</td>
<td>wfeng@ibp.ac.cn</td>
</tr>
<tr>
<td>FENG, XINHUA</td>
<td>BAYLOR COLLEGE OF MEDICINE</td>
<td>xfeng@bcm.edu</td>
</tr>
<tr>
<td>FU, YANGXIN</td>
<td>the University of Chicago</td>
<td>yfu@uchicago.edu</td>
</tr>
<tr>
<td>GAO, JINMING</td>
<td>UT Southwestern Medical Center</td>
<td>jinming.gao@utsouthwestern.edu</td>
</tr>
<tr>
<td>GU, LIYA</td>
<td>University of KY</td>
<td>lg0@uky.edu</td>
</tr>
<tr>
<td>GUAN, JUNLIN</td>
<td>UNIVERSITY OF MICHIGAN</td>
<td>jgjuan@umich.edu</td>
</tr>
<tr>
<td>GUAN, KUNLIANG</td>
<td>UCSD</td>
<td>kuguan@ucsd.edu</td>
</tr>
<tr>
<td>GUO, HUISHAN</td>
<td>INSTITUTE OF MICROBIOLOGY</td>
<td>guohs@im.ac.cn</td>
</tr>
<tr>
<td>GUO, LI</td>
<td>Novo Nordisk China R&D</td>
<td>lguo@novonordisk.com</td>
</tr>
<tr>
<td>HAN, CHUNSHENG</td>
<td>Institute of Zoology, CAS</td>
<td>hancs@ioz.ac.cn</td>
</tr>
<tr>
<td>HE, XI</td>
<td>HARVARD MEDICAL SCHOOL</td>
<td>xi.he@childrens.harvard.edu</td>
</tr>
<tr>
<td>HE, ZHIGANG</td>
<td>CHILDREN'S HOSPITAL BOSTO</td>
<td>zhigang.he@childrens.harvard.edu</td>
</tr>
<tr>
<td>HSU, AO-LIN</td>
<td>University of Michigan</td>
<td>aolinhua@umich.edu</td>
</tr>
<tr>
<td>HU, JINSHAN</td>
<td>MERCK INC</td>
<td>jingshan_hu@yahoo.com</td>
</tr>
<tr>
<td>HU, JING-SHAN</td>
<td>LABORATORI</td>
<td>jing_shan_hu@merck.com</td>
</tr>
<tr>
<td>HUA, JIAN</td>
<td>CORNELL UNIVERSITY</td>
<td>jh299@cornell.edu</td>
</tr>
<tr>
<td>JIANG, YOUXING</td>
<td>UT Southwestern Medical Center</td>
<td>youxing.jiang@utsouthwestern.edu</td>
</tr>
<tr>
<td>JIN, AIWEN</td>
<td>UNC Chapel Hill</td>
<td>aiwenjin@email.unc.edu</td>
</tr>
<tr>
<td>JIN, HAILING</td>
<td>University of California, Riverside</td>
<td>hailing@ucla.edu</td>
</tr>
<tr>
<td>JIN, YING</td>
<td>Shanghai Jiaotong Uni School of Med</td>
<td>yjin@sibs.ac.cn</td>
</tr>
<tr>
<td>KANG, YIBIN</td>
<td>PRINCETON UNIVERSITY</td>
<td>ykang@princeton.edu</td>
</tr>
<tr>
<td>KUANG, SHIHUAN</td>
<td>PURDUE UNIVERSITY</td>
<td>skuang@purdue.edu</td>
</tr>
<tr>
<td>LAI, ZHI-CHUN</td>
<td>Penn State University</td>
<td>zcl1@psu.edu</td>
</tr>
<tr>
<td>LE, WEIDONG</td>
<td>BAYLOR COLLEGE OF MEDICIN</td>
<td>weidongl@bcm.edu</td>
</tr>
<tr>
<td>LEI, MING</td>
<td>University of Michigan</td>
<td>leim@umich.edu</td>
</tr>
</tbody>
</table>

July 31-August 2, 2011
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>LI, JIAYANG</td>
<td>CHINESE ACADEMY OF SCIENCE</td>
<td>jyli@genetics.ac.cn</td>
</tr>
<tr>
<td>LI, CHENJIAN</td>
<td>Friedman Brain Institute, NYU</td>
<td>chenjian.li@mssm.edu</td>
</tr>
<tr>
<td>LI, DANGSHENG</td>
<td>Shanghai Inst of Biochem and Cell Biol</td>
<td>dsl@sibs.ac.cn</td>
</tr>
<tr>
<td>LI, GUOMIN</td>
<td>University of KY</td>
<td>gml@uyk.edu</td>
</tr>
<tr>
<td>LI, JUAN</td>
<td>UNC SCHOOL OF PHARMACY</td>
<td>juanL@email.unc.edu</td>
</tr>
<tr>
<td>LI, LINHENG</td>
<td>STOWERS INSTITUTE FOR MED</td>
<td>lil@stowers.org</td>
</tr>
<tr>
<td>LI, MIN</td>
<td>JOHNS HOPKINS UNIVERSITY</td>
<td>minli@jhmi.edu</td>
</tr>
<tr>
<td>Li, Qiang</td>
<td>University of Louisville</td>
<td>q.li@louisville.edu</td>
</tr>
<tr>
<td>LI, SEAN</td>
<td>HARVARD MEDICAL SCHOOL</td>
<td>sean.li@childrens.harvard.edu</td>
</tr>
<tr>
<td>LI, SHAWN</td>
<td>UNIVERSITY OF WESTERN ONT</td>
<td>sli@uwo.ca</td>
</tr>
<tr>
<td>LI, XIN</td>
<td>UNIVERSITY OF BRITISH COL</td>
<td>xinli@interchange.ubc.ca</td>
</tr>
<tr>
<td>LIAO, CHARLENE</td>
<td>GENENTECH INC.</td>
<td>liao.charlene@gene.com</td>
</tr>
<tr>
<td>LI EWANG</td>
<td>Mayo Clinic Rochester MN, USA</td>
<td>wang.liawei@mayo.edu</td>
</tr>
<tr>
<td>LIN, LARRY</td>
<td>Janssen Pharma Asia R&D</td>
<td>lin22@its.jnj.com</td>
</tr>
<tr>
<td>LIN, XIN</td>
<td>UNIVERSITY OF TEXAS, MD A</td>
<td>xlin@mdanderson.org</td>
</tr>
<tr>
<td>LIU, FENG</td>
<td>University of California, Irvine</td>
<td>h4liu@uci.edu</td>
</tr>
<tr>
<td>LIU, HAOQING</td>
<td>Beijing Novo Nordisk</td>
<td>hgul@novonordisk.com</td>
</tr>
<tr>
<td>LIU, HONGYU</td>
<td>HuaZhong Uni of Science and Technology</td>
<td></td>
</tr>
<tr>
<td>LIU, JIANFENG</td>
<td>UT MD Anderson Cancer Center</td>
<td>yjliu@mdanderson.org</td>
</tr>
<tr>
<td>LIU, YONGJUN</td>
<td>UCLA</td>
<td>xin@ucla.edu</td>
</tr>
<tr>
<td>LIU, YAN</td>
<td>INDIANA UNIVERSITY SCHOOL</td>
<td>liu219@iuipui.edu</td>
</tr>
<tr>
<td>LIU, YANG</td>
<td>UNIVERSITY OF MICHIGAN</td>
<td>yangi@umich.edu</td>
</tr>
<tr>
<td>LIU, YI</td>
<td>University of Texas HSC at San Antonio</td>
<td>yiy.liu@southwestern.edu</td>
</tr>
<tr>
<td>LOU, ZHENKUN</td>
<td>Mayo Clinic</td>
<td>lou.zhenkun@mayo.edu</td>
</tr>
<tr>
<td>LU, JIANRONG</td>
<td>University of Florida</td>
<td>jrlu@ufl.edu</td>
</tr>
<tr>
<td>LU, XIN-YUN</td>
<td>University of Texas HSC at San Antonio</td>
<td>lux3@uthscsa.edu</td>
</tr>
<tr>
<td>LUNO, KUNXIN</td>
<td>UNIVERSITY OF CALIFORNIA, STANFORD UNIVERSITY</td>
<td>kluo@berkeley.edu</td>
</tr>
<tr>
<td>LUO, LIOUN</td>
<td>UNIVERSITY OF WATERLOO</td>
<td>luo@stanford.edu</td>
</tr>
<tr>
<td>MA, KESEN</td>
<td>University of Waterloo</td>
<td>kma@uwaterloo.ca</td>
</tr>
<tr>
<td>MA, WENOBO</td>
<td>UNIVERSITY OF CALIFORNIA</td>
<td>wenboma@ucr.edu</td>
</tr>
<tr>
<td>MA, XIAOJING</td>
<td>WEILL MEDICAL COLLEGE OF Baylor College of Medicine</td>
<td>xim2002@med.cornell.edu</td>
</tr>
<tr>
<td>MENG, WANG</td>
<td>Johns Hopkins University</td>
<td>wmleng@bcm.edu</td>
</tr>
<tr>
<td>MIN, GUOLI</td>
<td>Johns Hopkins University</td>
<td>gming1@jhmi.edu</td>
</tr>
<tr>
<td>Padarathising, Martin</td>
<td>Guangzhou Institute of Biomed, CAS</td>
<td>pei_duanqing@gibh.ac.cn</td>
</tr>
<tr>
<td>PEI, DUANQING</td>
<td>St. Jude Childrens Researh</td>
<td>junmin.peng@stjude.org</td>
</tr>
<tr>
<td>PENG, JUNMIN</td>
<td>Cornell University</td>
<td>lq35@cornell.edu</td>
</tr>
<tr>
<td>QI, LING</td>
<td>Baylor College of Medicine</td>
<td>jjin@bcm.edu</td>
</tr>
<tr>
<td>QIN, JUN</td>
<td>UC Berkeley</td>
<td>qingzhong@berkeley.edu</td>
</tr>
<tr>
<td>QING, ZHONG</td>
<td>Peking University</td>
<td>fangminli@pku.edu</td>
</tr>
<tr>
<td>RAO, YI</td>
<td>Shanghai Institutes for Biol Sciences</td>
<td>zr@sibs.ac.cn</td>
</tr>
<tr>
<td>RONG ZENG</td>
<td>PURDUE UNIVERSITY</td>
<td>mr@purdue.edu</td>
</tr>
</tbody>
</table>

July 31-August 2, 2011
MICHAEL RUAN, YIJUN Genome Institute of Singapore ruanyj@gis.a-star.edu.sg
RUAN, QINGGUO UNIVERSITY OF PENNSYLVANII qingguo2@mail.med.upenn.edu
RUI, YI University of Colorado - Boulder yir@colorado.edu
SHEN, BINGHUI BECKMAN RESEARCH INSTITUTE bshen@coh.org
SHENG, SHIJIE WAYNE STATE UNIV. SCHOOL ssheng@med.wayne.edu
SHI, YANHONG BECKMAN RESEARCH INSTITUTE yshi@coh.org
SHI, YIGONG TSINGHUA UNIVERSITY ygshi@tsinghua.edu.cn
SONG, HONGJUN JOHNS HOPKINS UNIVERSITY songyang@bcm.edu
SONGYANG, ZHOU BAYLOR COLLEGE OF MEDICINE yiw@bcm.edu
SU, JING Beijing Novo Nordisk sjin@novonordisk.com
SU, BING YALE UNIVERSITY Bing.Su@yale.edu
SU, LISHAN UNC CHAPEL HILL su@med.unc.edu
SUN, EVA YI UCLA MEDICAL SCHOOL ysun@mednet.ucla.edu
SUN, XIAOHONG OKLAHOMA MEDICAL Research Xiao-Hong-Sun@omrf.org
SUN, YI UNIVERSITY OF MICHIGAN sunyi@umich.edu
WAN, CHAO CHINESE UNIVERSITY OF HON cwan@cuhk.edu.hk
WANG, BIN MD Anderson Cancer Center bwang3@mdanderson.org
WANG, FAN Duke University Medical Center fan.wang@duke.edu
WANG, JISHU Novo Nordisk R&D, China jshw@novonordisk.com
WANG, LIANCHUN University of Georgia lwang@ccrc.uga.edu
WANG, XIAOFAN Duke University Medical Center wang0011@mc.duke.edu
WANG, YI Baylor College of Medicine yiw@bcm.edu
WANG, YIBIN UCLA yibenwang@mednet.ucla.edu
WANG, BAOLING SOUTHEAST UNIV CHINA baop@novonordisk.com
WANG, CHENGQUANG THOMAS JEFFERSON UNIVERSITY XJ.Wang@UCDenver.edu
WANG, XIAOJING UNIVERSITY OF COLORADO DE xjwang@yale.edu
WANG, ZHONG HARVARD zhwang@partners.org
WANG, ZONGHUA Fu jian Agriculture and Forestry University zonghuaw@163.com
WEI, YAN University of Nevada School of Med wyan@medicine.nevada.edu
WU, HUI Birmingham hwu@uab.edu
WU, ZHENGUO Hong Kong Uni of Science & Technology bczgwu@ust.hk
WU, HAO WEILL MEDICAL COLLEGE COR haowu@med.cornell.edu
WU, HONG UCLA hwu@mednet.ucla.edu
XI, RONGWEN NATIONAL INST OF BIOL SCI xirongwen@nibs.ac.cn
XIAO, XIAO UNC xxiao@email.unc.edu
XIE, TING Research tgx@stowers.org
XIONG, YUE UNIVERSITY OF NORTH CAROLIN yxi@med.unc.edu
XU, BAOJI Inst of Biochemistry and Cell Biol., CAS bx3@georgetown.edu
XU, GUOLIANG National Institute of Biological Sciences xuxiaohua@nibs.ac.cn
XU, SHAHUA Institute of Biophysics, CAS xuxiaohua@nibs.ac.cn
XU, TAO Institute of Biophysics, CAS xutao@ibp.ac.cn
XU, RENHE UNIVERSITY OF CONNECTICUT renhexu@uchc.edu
XU, TIAN YALE UNIVERSITY tian.xu@yale.edu

July 31-August 2, 2011
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xu, Xianzhong</td>
<td>University of Michigan</td>
<td>shawnxu@umich.edu</td>
</tr>
<tr>
<td>Xu, Yan</td>
<td>Indiana University School</td>
<td>xu2@iupui.edu</td>
</tr>
<tr>
<td>Yali Dou</td>
<td>University of Michigan</td>
<td>yalid@med.umich.edu</td>
</tr>
<tr>
<td>Yan, Jun</td>
<td>University of Louisville</td>
<td>jun.yan@louisville.edu</td>
</tr>
<tr>
<td>Yan, Nieng</td>
<td>Tsinghua University</td>
<td>nyan@tsinghua.edu.cn</td>
</tr>
<tr>
<td>Yan, Shixiang</td>
<td>Roche</td>
<td>frank.yan@roche.com</td>
</tr>
<tr>
<td>Yang, Jian</td>
<td>Columbia University</td>
<td>jy160@columbia.edu</td>
</tr>
<tr>
<td>Yang, Xiangdong</td>
<td>University of California, Los Angeles</td>
<td>xwyang@mednet.ucla.edu</td>
</tr>
<tr>
<td>Yang, Zhiru</td>
<td>Novo Nordisk China R&D center</td>
<td>ziuy@novonordisk.com</td>
</tr>
<tr>
<td>Yang, Xianjie</td>
<td>UCLA</td>
<td>yang@jsei.ucla.edu</td>
</tr>
<tr>
<td>Yang, Xiaoyong</td>
<td>UT Southwestern Medical</td>
<td>hongtao.yu@utsouthwestern.edu</td>
</tr>
<tr>
<td>Yu, Dihua</td>
<td>University of Texas MD An</td>
<td>dyu@mdanderson.org</td>
</tr>
<tr>
<td>Yu, Dong</td>
<td>Washington University Sch</td>
<td>dongyu@borcim.wustl.edu</td>
</tr>
<tr>
<td>Zhang, Jian</td>
<td>University of Chicago</td>
<td>jzhang@medicine.uchicago.edu</td>
</tr>
<tr>
<td>Zhang, Jun</td>
<td>Novo Nordisk Pharm</td>
<td>ynzx@novonordisk.com</td>
</tr>
<tr>
<td>Zhang, Kun</td>
<td>UCSD</td>
<td>kzhang@bioeng.ucsd.edu</td>
</tr>
<tr>
<td>Zhang, Mingjie</td>
<td>Hong Kong Uni of Sci and Technol</td>
<td>mzhang@ust.hk</td>
</tr>
<tr>
<td>Zhang, Peizhuo</td>
<td>Shanghai GenePharma</td>
<td>pzhang@genepharma.com</td>
</tr>
<tr>
<td>Zhang, Pumin</td>
<td>Baylor College of Medicine</td>
<td>pzhang@bcm.edu</td>
</tr>
<tr>
<td>Zhang, Qingyu</td>
<td>SUNY Albany and NYSDOH</td>
<td>zhangq@wadsworth.org</td>
</tr>
<tr>
<td>Zhang, Su-Chun</td>
<td>University of Wisconsin</td>
<td>zhang@waisman.wisc.edu</td>
</tr>
<tr>
<td>Zhang, Xin</td>
<td>Indiana University</td>
<td>xz4@iupui.edu</td>
</tr>
<tr>
<td>Zhang, Yanping</td>
<td>UNC Chapel Hill</td>
<td>ypzhang@med.unc.edu</td>
</tr>
<tr>
<td>Zhang, Zhuohua</td>
<td>Central South University</td>
<td>zztop90@gmail.com</td>
</tr>
<tr>
<td>Zhang, Jiantine</td>
<td>Indiana Univ</td>
<td>jianzhan@iupui.edu</td>
</tr>
<tr>
<td>Zhang, Peijun</td>
<td>University of Pittsburgh</td>
<td>pez7@pitt.edu</td>
</tr>
<tr>
<td>Zhang, Qinghong</td>
<td>University of Colorado</td>
<td>Qinghong.Zhang@UCDenver.edu</td>
</tr>
<tr>
<td>Zhang, Xu</td>
<td>Institute of Neuroscience, CAS</td>
<td>xu.zhang@ion.ac.cn</td>
</tr>
<tr>
<td>Zhang, Xuewu</td>
<td>UT Southwestern Medical Center</td>
<td>xuewu.zhang@utsouthwestern.edu</td>
</tr>
<tr>
<td>Zhang, Zhiguo</td>
<td>Mayo Clinic</td>
<td>zhang.zhiguo@mayo.edu</td>
</tr>
<tr>
<td>Zhao, Hailing</td>
<td>Johns Hopkins University</td>
<td>hzhao@jhu.edu</td>
</tr>
<tr>
<td>Zheng, Yixian</td>
<td>Carnegie Institution for Science</td>
<td>zheng@ciwemb.edu</td>
</tr>
<tr>
<td>Zheng, Hui</td>
<td>Baylor College of Medicine</td>
<td>huiz@bcm.edu</td>
</tr>
<tr>
<td>Zheng, Pan</td>
<td>University of Texas HSC at San Antonio</td>
<td>panz@umich.edu</td>
</tr>
<tr>
<td>Zhong, Guangming</td>
<td>Yale University</td>
<td>Zhongg@UTHSCSA.edu</td>
</tr>
<tr>
<td>Zhong, Weimin</td>
<td>University of California, Irvine</td>
<td>weimin.zhong@yale.edu</td>
</tr>
<tr>
<td>Zhongping Chen</td>
<td>Weill Cornell Medical College</td>
<td>pez2001@med.cornell.edu</td>
</tr>
<tr>
<td>Zhou, Pengbo</td>
<td>UT MD Anderson Cancer Center</td>
<td>czhu@mdanderson.org</td>
</tr>
<tr>
<td>Zhu, Chuming</td>
<td>University of Michigan</td>
<td>yuanzhu@med.umich.edu</td>
</tr>
<tr>
<td>Zhu, Yuelan</td>
<td>Duke University</td>
<td>yzhuang@duke.edu</td>
</tr>
<tr>
<td>Zou, Weiping</td>
<td>University of Michigan</td>
<td>wzou@med.umich.edu</td>
</tr>
<tr>
<td>Zou, Yueping</td>
<td>East Tennessee State Univ</td>
<td>zouy@etsu.edu</td>
</tr>
<tr>
<td>Zuoren Wang</td>
<td>Institute of Neuroscience, CAS</td>
<td>zuorenwang@ion.ac.cn</td>
</tr>
</tbody>
</table>
会议安排：

用餐安排：

一， 会议期间的会议用餐日期为：7月31日—8月2日。
提前来的代表用餐自理，代表可以自由在酒店点吃，或去酒店外的农家开的餐厅点吃，但一定要结伴而行，询价后点菜。

早餐凭房卡在酒店一楼西餐厅自由用自助早餐，每个房间含2个早餐，超过用早餐数量的客人：98元/位自理

7月31日—8月2日中餐统一在酒店一楼中餐厅凭劵用自助餐，7月31日—8月2日

晚餐 7月31日 Welcome dinner 泰和大厅，Taihe Conference Hall 凭劵用餐

8月1日 Buffer dinner 凭劵用餐

8月2日 Closing dinner 泰和大厅，Taihe Conference Hall 凭劵用餐

二， 学术交流：

7月31日—2日 上午在酒店二楼泰和国际厅，下午在1会议室和2会议室分组讨论

31日—2日晚上在酒店二楼泰和国际厅

时间：上午8点—12点，下午13点—18点

三， 会务组

3045号房间 谭嵘 18684660420

酒店大堂，联系电话：谭谈（13808426998），谢彬（15873162055），周迅夷（13755023043）

联系人：Zhang Jiajie（张家界）谭谈，13808426998

Changsha（长沙）喻丹，15873100371

四，注意事项：

- 请按日程准时参加会议及各项活动；
- 请佩戴胸卡进入会场、展厅；
五. 旅游指南:

半日游：中餐后游览“亚洲第一洞”【黄龙洞】（游览时间2.5小时）+宝峰湖风景区
价格：298元/人

半日游：乘百龙天梯上袁家界、天下第一桥，前往因土家族农民起义领袖向王天子而得名的【天子山】（游览时间2小时，往返索车自理52元/人），欣赏御笔峰、仙女散花、贺龙公园等景点。游览【十里画廊】（游览时间1.5小时，往返小火车自理40元/人），欣赏其标志性景点---采药老人、食指峰等景点。
价格：398元/人

一日游：早餐后乘百龙天梯上袁家界、天下第一桥，前往因土家族农民起义领袖向王天子而得名的【天子山】（游览时间2小时，往返索车自理52元/人），欣赏御笔峰、仙女散花、贺龙公园等景点。游览【十里画廊】（游览时间1.5小时，往返小火车自理40元/人），欣赏其标志性景点---采药老人、食指峰等景点。下午游览“亚洲第一洞”【黄龙洞】（游览时间2.5小时）。
价格：498元/人

会议结束返回路线和搭车信息

第一种方式：在景区旁边的汽车站每天早上08:25分和下午的15:00分都有直达班车赴长沙汽车西站，时间为4个小时。然后从汽车西站打的是去黄花机场，时间70分钟左右，价格150元左右。

第二种方式：在景区旁边的汽车站每天早上08:00分和下午的17:00分都有直达班车赴张家界市区车站，张家界市区车站每整点都有出发到长沙汽车西站，时间为4个小时。从长沙汽车西站打的是去黄花机场，时间70分钟左右，价格150元左右。
第三种方式：张家界荷花机场飞机赴长沙，每天 06:50 起飞 07:35 到长沙-黄花机场。

Flight schedule leaving Zhanjiajie:

8 月	张家界到上海 Pudong	21:30	23:20
		22:15	00:05
		23:30	01:20
张家界到北京	22:00	00:10	
张家界到广州	09:50	11:20	
	22:20	23:55	
	22:50	00:25	

张家界京伯尔曼位置示意图：
Novo Nordisk R&D Center China (Beijing Novo Nordisk Pharmaceuticals Science and Technology Co. Ltd)

Novo Nordisk established Novo Nordisk (China) R&D Center, one of four R&D units that Novo Nordisk established outside Denmark, in Beijing in 1997, and a healthcare dedicated center in 2002. In 2006, the center was registered as an independent company named “Beijing Novo Nordisk Pharmaceuticals Science and technology Co., Ltd.” (abbreviated as NNST). The center’s main research area is therapeutic protein discovery and development for treating diabetes, inflammatory diseases, homeostasis and human growth hormone deficiency, with the current focus on technology development and application of protein expression and purification. In September 2010, Novo Nordisk announced that the company will expand NNST from currently 100 people to 200 employees by 2015. As an integral part of Novo Nordisk Global R&D, the R&D team in China will eventually take part in drug discovery from idea generation through in vivo pharmacology.